

International Symposium on Advances in Fourier
Transform Infrared Spectroscopy and Its Applications

FTIRFrontiers 2026

International Symposium on Advances in Fourier Transform Infrared Spectroscopy and Its Applications

Theme: From Molecular Vibrations to Functional Materials

April 2-4, 2026

© Symposium Overview

FTIRFrontiers 2026 highlights the latest advances in Fourier Transform Infrared Spectroscopy (FTIR), a cornerstone analytical technique across chemistry, physics, materials science, and biology. The symposium showcases innovations in instrumentation, spectral interpretation, nanoscale IR imaging, and in-situ/operando monitoring—linking fundamental vibrational analysis to applications in materials, polymers, catalysts, and biological systems. It aims to bridge classical FTIR spectroscopy with emerging technologies such as nano-FTIR, machine learning for spectral analytics, and operando chemical probing.

Symposium Tracks

Track 1 – Fundamentals and Techniques of FTIR Spectroscopy

Comprehensive coverage of FTIR principles, configurations, and advanced modalities:

- Conventional FTIR transmission, reflection, emission
- Attenuated Total Reflection (ATR-FTIR)
- Diffuse Reflectance Infrared Fourier Transform (DRIFT)
- FTIR Microscopy & Imaging chemical mapping, 2D/3D spatial resolution
- Nano-FTIR (AFM-IR) nanoscale vibrational contrast
- Time-Resolved & Temperature-Dependent FTIR
- In-Situ / Operando FTIR catalysis, corrosion, polymerization, battery studies
- Fourier Transform Infrared Spectroscopic Ellipsometry (FTIR-SE)
- Polarization-Modulated & Step-Scan FTIR
- Cryogenic & High-Pressure FTIR Systems

◆ Track 2 – FTIR in Materials Science and Nanotechnology

- Molecular fingerprinting of semiconductors, oxides, and composites
- FTIR for phase, crystallinity, and defect analysis
- Characterization of hybrid materials and metal-organic frameworks (MOFs)
- Monitoring thin-film growth and surface functionalization
- Nano-FTIR of 2D materials, nanowires, and plasmonic structures

Track 3 – FTIR in Polymers and Soft-Matter Systems

- Structural evolution during polymerization and curing
- Spectral analysis of blends, copolymers, and additives
- FTIR monitoring of degradation, oxidation, and aging
- ATR-FTIR for surface modification and adhesion studies
- Mapping molecular orientation and crosslinking in soft materials

◆ Track 4 – FTIR in Biological and Environmental Sciences

- FTIR for protein secondary structure and lipid profiling
- Infrared microspectroscopy for tissue and cell imaging
- Label-free molecular diagnostics
- FTIR analysis of environmental pollutants and atmospheric gases
- Water-biomolecule interactions and hydration dynamics

◆ Track 5 – Data Analysis, Al, and Machine Learning in Infrared Spectroscopy

- Chemometrics, PCA, and multivariate curve resolution (MCR)
- Deep learning for automated spectral classification
- Development of spectral libraries and fingerprint databases
- Data fusion: FTIR + Raman + XPS
- · Advanced noise-filtering and signal-deconvolution algorithms